
University of Kashmir, North Campus

1

Course Code Course Name Course Instructor

MCA-101-CR Advanced Programming Concepts in C / C++ Bilal Ahmad Dar

Contents

1. Templates 2

1.1. Function Templates 2

1.1.1. Function with a generic type 3

1.1.2. Function with two generic types 4

1.1.3. Explicitly Overloading a Generic Function 4

1.1.4. Overloading a Function Template 6

1.2. Generic Classes 7

1.2.1. Member Function Template 8

1.2.2. Class Template example 8

2. Exception Handling 9

2.1. Basics of Exception handling 9

2.2. Simple Example 11

2.3. Using multiple catch Statements 12

2.4. Catching All Exceptions 13

University of Kashmir, North Campus

2

1. Templates

 The template is one of C++'s most sophisticated and high-powered features. Using

templates, it is possible to create generic functions and classes and thus provide

support for generic programming. Generic programming is an approach where

generic types are used as parameters in algorithms so that they work for a variety of

suitable data types and data structures. Thus, we can use one function or class with

several different types of data without having to explicitly recode specific versions

for each data type.

1.1. Function Templates/Generic Functions

Function templates are special functions that can operate with generic types.
Function templates could be used to create a family of functions with different
argument types. In C++, a template function is created using the keyword
template.

The general form of a template function definition is shown here:

template <class type> ret-type func-name(parameter list)

{
// body of function

}

Here, type is a placeholder name for a data type used by the function.
Since C++ does not recognize end-of-line as a statement terminator, the
template clause of a generic function definition does not have to be on the
same line as the function's name.
 So a template can also be written as:

template <class type>
ret-type func-name(parameter list)
{

// body of function
}

University of Kashmir, North Campus

3

1.1.1. Function with generic type

The following example creates a generic function that swaps the values of the
two variables.

#include <iostream>
template <class X> void swap(X &a, X &b) // This is a function template.
{

X temp;
temp = a;
a = b;
b = temp;

}
int main()
{

int i=10, j=20;
double x=10.1, y=23.3;
char a='x', b='z';
cout << "Original i, j: " << i << ' ' << j << '\n';
cout << "Original x, y: " << x << ' ' << y << '\n';
cout << "Original a, b: " << a << ' ' << b << '\n';
swap(i, j); // swap integers
swap(x, y); // swap floats
swap(a, b); // swap chars
cout << "Swapped i, j: " << i << ' ' << j << '\n';
cout << "Swapped x, y: " << x << ' ' << y << '\n';
cout << "Swapped a, b: " << a << ' ' << b << '\n';
return 0;

}

template <class X> void swap(X &a, X &b)

tells the compiler two things: that a template is being created and that a generic

definition is beginning. Here, X is a generic type that is used as a placeholder.

After the template portion, the function swap() is declared, using X as the data

type of the values that will be swapped. In main() , the swap() function is called

using three different types of data: ints, floats, and chars. Because swap() is a

generic function, the compiler automatically creates three versions of swap() :

one that will exchange integer values, one that will exchange floating-point

values, and one that will swap characters.

Here are some important terms related to templates. First, a generic function

(that is, a function definition preceded by a template statement) is also called a

University of Kashmir, North Campus

4

template function. When the compiler creates a specific version of this function,

it is said to have created a specialization. This is also called a generated function.

The act of generating a function is referred to as instantiating it. A generated

function is a specific instance of a template function.

1.1.2. A Function with Two Generic Types

We can define more than one generic data type in the template statement by

using a comma-separated list. For example, this program creates a template

function that has two generic types.

#include <iostream>

template <class type1, class type2>

void func(type1 x, type2 y)

{

cout << x << ' ' << y << '\n';

}

int main()

{

func(10, "Hello");

func(98.6, 19);

return 0;

}

In this example, the placeholder types type1 and type2 are replaced by the

compiler with the data types int and char *, and float and int, respectively, when

the compiler generates the specific instances of func() within main().

1.1.3. Explicitly Overloading a Generic Function

Even though a generic function overloads itself as needed, you can explicitly

overload one, too. This is formally called explicit specialization. If you overload

a generic function, that overloaded function overrides (or "hides") the generic

function relative to that specific version. For example, consider the following

revised version of the argument swapping example shown earlier.

// Overriding a template function.

#include <iostream>Remember

template <class X>

 void swap(X &a, X &b)

University of Kashmir, North Campus

5

{

X temp;

temp = a;

a = b;

b = temp;

cout << "Inside template swap.\n";

}

// This overrides the generic version of swap() for ints.

void swap(int &a, int &b)

{

int temp;

temp = a;

a = b;

b = temp;

cout << "Inside swap int specialization.\n";

}

int main()

{

int i=10, j=20;

double x=10.1, y=23.3;

char a='x', b='z';

cout << "Original i, j: " << i << ' ' << j << '\n';

cout << "Original x, y: " << x << ' ' << y << '\n';

cout << "Original a, b: " << a << ' ' << b << '\n';

swap(i, j); // calls explicitly overloaded swap()

swap(x, y); // calls generic swap()

swap(a, b); // calls generic swap()

cout << "Swapped i, j: " << i << ' ' << j << '\n';

cout << "Swapped x, y: " << x << ' ' << y << '\n';

cout << "Swapped a, b: " << a << ' ' << b << '\n';

return 0;

}

This program displays the following output.

Original i, j: 10 20

Original x, y: 10.1 23.3

Original a, b: x z

Inside swap int specialization.

Inside template swap.

Inside template swap.

University of Kashmir, North Campus

6

Swapped i, j: 20 10

Swapped x, y: 23.3 10.1

Swapped a, b: z x

1.1.4. Overloading a Function Template

In addition to creating explicit, overloaded versions of a generic function, you

can also overload the template specification itself. To do so, simply create

another version of the template that differs from any others in its parameter

list. For example:

#include <iostream>

// First version of fun() template.

template <class X> void fun(X a)

{

cout << "Inside fun(X a)\n";

}

// Second version of fun() template.

template <class X, class Y> void fun(X a, Y b)

{

cout << "Inside fun(X a, Y b)\n";

}

int main()

{

fun(10); // calls fun(X)

fun(10, 20); // calls fun(X, Y)

return 0;

}

Here, the template for fun() is overloaded to accept either one or two

parameters.

University of Kashmir, North Campus

7

1.2. Generic Classes

In addition to generic functions, you can also define a generic class. When you do

this, you create a class that defines all the algorithms used by that class; however,

the actual type of the data being manipulated will be specified as a parameter when

objects of that class are created.

Generic classes are useful when a class uses logic that can be generalized. For

example, the same algorithms that maintain a queue of integers will also work for

a queue of characters, and the same mechanism that maintains a linked list of

mailing addresses will also maintain a linked list of auto part information. When you

create a generic class, it can perform the operation you define, such as maintaining

a queue or a linked list, for any type of data. The compiler will automatically

generate the correct type of object, based upon the type you specify when the

object is created.

The general form of a generic class declaration is shown here:

template <class type> class class-name {

..

..

}

Here, type is the placeholder type name, which will be specified when a class is

instantiated. If necessary, you can define more than one generic data type using a

comma-separated list.

 Once you have created a generic class, you create a specific instance of that class

using the following general form:

class-name <type> ob;

Here, type is the type name of the data that the class will be operating upon. You

could also define generic variables in the class as:

type var-name;

University of Kashmir, North Campus

8

1.2.1. Member Function Template

When defining a function as a member of a templated class, it is necessary

to define it as a template function:

template <class type> ret-type class-name<type>::fun-name()

 {

..

..

}

Member functions of a generic class are themselves automatically

generic. You need not use template to explicitly specify them as such.

1.2.2. Class Template example

In the following program, the Calculator class is created as a generic class.

Thus, it can be used to calculate (Addition and multiplication) objects of any

type.

#include <iostream>
template <class A> class Calculator //Template class

{

 public:

 A multiply(A x, A y);

 A add(A x, A y);

};

template <class A> A Calculator <A>::multiply(A x, A y) //Member function template for

multiplication

{

 return x*y;

}

template <class A> A Calculator <A>::add(A x, A y) //Member function template for Addition

{

 return x+y;

}

int main()

University of Kashmir, North Campus

9

{

Calculator <int> s; // create integer type

cout << "Addition of two integer values: " << s.add(10,20)<< "\n";

cout << "Multiplication of two integer values: " <<s .multiply(10,20)<<"\n";

Calculator<double> p; // create Float type

cout << "Addition of two float values: " << p.add(5.3,7.6)<< "\n";

cout << "Multiplication of two float values: " <<p.multiply(5.3,7.6)<<"\n";

return 0;

}

Notice how the desired data type is passed inside the angle brackets. By

changing the type of data specified when Calculator objects are created,

you can change the type of data on which the calculations are to be

performed.

2. Exception Handling

Exceptions are errors that occur at runtime. They are caused by a wide variety of

exceptional circumstance, such as running out of memory, not being able to open a

file, trying to initialize an object to an impossible value, or using an out-of-bounds index

to an array. When such exceptions occur, the programmer has to decide a strategy

according to which he would handle the exceptions.

2.1. Basics of Exception Handling

 C++ provides a systematic, object-oriented approach to handle run-time errors.

The exception mechanism of C++ uses three keywords: try, catch and throw. In the

most general terms, program statements that you want to monitor for exceptions

are contained in a try block. If an exception (i.e., an error) occurs within the try

block, it is thrown (using throw). The exception is caught, using catch, and

processed.

The general form of try and catch are shown here.

try {

// try block

University of Kashmir, North Campus

10

}

catch (type1 arg) {

// catch block

}

catch (type2 arg) {

// catch block

}

catch (type3 arg) {

// catch block

}

..

.

catch (typeN arg) {

// catch block

}

When an exception is thrown, it is caught by its corresponding catch statement,

which processes the exception. There can be more than one catch statement

associated with a try. Which catch statement is used is determined by the type of

the exception. When an exception is caught, arg will receive its value. Any type of

data may be caught, including classes that you create. If no exception is thrown

(that is, no error occurs within the try block), then no catch statement is executed.

The general form of the throw statement is shown here:

throw exception;

throw generates the exception specified by exception. If this exception is to be

caught, then throw must be executed either from within a try block itself, or from

any function called from within the try block (directly or indirectly). Throwing an

unhandled exception causes the standard library function terminate() to be

invoked.

University of Kashmir, North Campus

11

2.2. Simple Example

Here is a simple example that shows the way C++ exception handling operates.

// A simple exception handling example.

#include <iostream>

 int main()

{

cout << "Start\n";

try

 {

// start a try block

cout << "Inside try block\n";

throw 100; // throw an error

cout << "This will not execute";

}

catch (int i) // catch an error

 {

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

This program displays the following output:
Start

Inside try block

Caught an exception -- value is: 100

End

As you can see, there is a try block containing three statements and a catch(int i)

statement that processes an integer exception. Within the try block, only two of

the three statements will execute: the first cout statement and the throw. Once an

exception has been thrown, control passes to the catch expression and the try block

is terminated. That is, catch is not called. Rather, program execution is transferred

to it. (The program's stack is automatically reset as needed to accomplish this.)

Thus, the cout statement following the throw will never execute.

University of Kashmir, North Campus

12

2.3. Using multiple catch Statements

As stated, you can have more than one catch associated with a try. In fact, it is

common to do so. However, each catch must catch a different type of exception.

For example, this program catches both integers and strings.

#include <iostream>

using namespace std;

void Xhandler(int test)

{

try

{

if(test) //if test not equal to zero

throw test;

else

 throw "Value is zero";

}

catch(int i)

{

cout << "Caught Exception #: " << i << '\n';

}

catch(const char *str)

{

cout << "Caught a string: ";

cout << str << '\n';

}

}

int main()

{

cout << "Start\n";

Xhandler(1);

Xhandler(2);

Xhandler(0);

Xhandler(3);

cout << "End";

return 0;

}

This program produces the following output:

Start

Caught Exception #: 1

University of Kashmir, North Campus

13

Caught Exception #: 2

Caught a string: Value is zero

Caught Exception #: 3

End

As you can see, each catch statement responds only to its own type.

In general, catch expressions are checked in the order in which they occur in a

program. Only a matching statement is executed. All other catch blocks are ignored.

2.4. Catching All Exceptions

In some circumstances you will want an exception handler to catch all exceptions

instead of just a certain type. This is easy to accomplish. Simply use this form of

catch.

catch(...)

{

// process all exceptions

}

Here, the ellipsis matches any type of data. The following program illustrates

catch(...).

// This example catches all exceptions.

#include <iostream>

void Xhandler(int test)

{

try

{

if(test==0)

throw test; // throw int

if(test==1)

throw 'a'; // throw char

if(test==2)

throw 123.23; // throw double

}

catch(...) // catch all exceptions

 {

cout << "Caught One!\n";

University of Kashmir, North Campus

14

}

}

int main()

{

cout << "Start\n";

Xhandler(0);

Xhandler(1);

Xhandler(2);

cout << "End";

return 0;

}

This program displays the following output.

Start

Caught One!

Caught One!

Caught One!

End

